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Abstract

We study local and global gravitational e�ects of (D-2)-brane con�gurations

(domain walls) in the vacuum of D-dimensional space-time. We focus on

in�nitely thin vacuum domain walls with arbitrary cosmological constants

on either side of the wall. In the comoving frame of the wall we derive a

general metric Ansatz , consistent with the homogeneity and isotropy of the

space-time intrinsic to the wall, and employ Israel's matching conditions at

the wall. The space-time, intrinsic to the wall, is that of (D-1)-dimensional

Freedman-Lemâitre-Robertson-Walker universe (with k = �1; 0; 1) which has

a (local) description as either anti-deSitter, Minkowski or de Sitter space-time.

For each of these geometries, we provide a systematic classi�cation of the local

and global space-time structure transverse to the walls, for those with both

positive and negative tension; they fall into di�erent classes according to the

values of their energy density relative to that of the extreme (supersymmetric)

con�gurations. We �nd that in any dimension D, both local and global space-

time structure for each class of domain walls is universal. We also comment on

the phenomenological implications of these walls in the special case of D=5.
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I. INTRODUCTION

Recent months have witnessed a resurgence in the study of domain walls with asymptoti-
cally anti-deSitter space-times (AdS). This renewed interest is motivated both from the point
of view of AdS/CFT correspondence, providing new insights in the study of RGE ows (see
e.g., [1{11] and references therein) as well as from the phenomenological perspective, provid-
ing a possible resolution to hierarchy problem in the context of a world on a domain wall in
D=5 asymptotically AdS space-times (see, e.g., [12{20] and references therein). This is an
exiting period when formal theoretical developments drive phenomenological implications
and vice versa.

A prerequisite for addressing physics implications of such con�gurations is a detailed
understanding of their space-time structure. Earlier work on the subject concentrated on
the domain walls in D=4 space-time dimensions, where either side of the wall was to be
interpreted as that of our four-dimensional Universe. The �rst example of static domain walls
between vacua with di�erent cosmological constants were found is [21] as supersymmetric
(BPS-saturated/extreme) walls interpolating between supersymmetric vacua of D=4 N = 1
supergravity vacua. In [22] a classi�cation of the possible supersymmetric walls has been
given, and the global structure of the space-times induced by these walls has been explored
in [23,24]. A subsequent systematic investigation [25] of the space-times of domain walls
separating regions of non-positive cosmological constant in Einstein's theory of gravitation,
revealed a more general class of domain wall con�gurations.1 (For a review, see [26].)

The purpose of the present work is to generalize the results of the study of vacuum
domain walls in D=4 [25] to (D-2)-brane-con�gurations in D-dimensions, with D=5 being
of special interest to the physics-implications for the four-dimensional domain wall-world
(as well as of theoretical interest for RGE ows of strongly coupled gauge-theories in four
dimensions).

Following the work of [25] we derive the local and global properties of the space-times
induced by vacuum domain walls in D-dimensions between vacua of arbitrary cosmological
constant. We start with the Ansatz that the gravitational �eld inherits the boost sym-
metry of the source, but we assume nothing about the topology of the (D-1)-dimensional
space-times parallel to the surface of the domain wall. The space-time intrinsic to the
wall, are Freedman-Lemâitre-Robertson-Walker (FLRW) universes describing locally (D-
1)-dimensional space-times with anti-deSitter (AdSD�1), Minkowski (MD�1) or de Sitter
(dSD�1) space-times. For each of these space-times internal to the wall, the space-time
transverse to the wall can be classi�ed according to the values of cosmological constants �1;2

on either side of the wall and their relationship to the energy density of the wall �.
An important result of the analysis is that the space-times of domain walls have the same

universal structure in all D; the space-time intrinsic to the wall is that of (D-1)-dimensional
FLRW universe, and the metric coe�cient, specifying the space-time transverse to the wall
has the same form with parameters depending on �i=[(D � 1)(D � 3)].

1Space-time properties of non-static domain walls in D=5 were recently addressed in [27{34] and

references therein. As the results of this paper demonstrate, the space-time structure of domain

walls in D-dimensions (including D = 4) is completely parallel.
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The paper is organized as follows. In Section II we derive the line-element Ansatz,
by working in the comoving frame of the wall in D-dimensions. In Section III we classify
the domain wall solutions according to their energy-density and the values of cosmological
constants on either side. We present the discussion of the result in Section IV , including the
implications for their non-extreme generalizations. In particular, we discuss the examples
in D = 5, which have been recently studied intensively.

II. LOCAL PROPERTIES OF DOMAIN WALL SPACE-TIMES

In this section we present the metric Ansatz for vacuum domain walls for Einstein gravity
in D-dimensions; these walls, created from a scalar �eld source, separate vacuum space-times
of zero, positive, and negative cosmological constants. We study in detail only in�nitely thin
domain walls, by employing Israel's formalism [35] of singular hypersurfaces.

A. Metric Ansatz

We solve D-dimensional Einstein's gravitational �eld equations in the co-moving frame
of the domain wall, by assuming the following symmetry of the metric Ansatz [25]:

� The spatial part of the metric intrinsic to the wall is homogeneous and isotropic.

� The space-time section transverse to the wall is static.

� The directions parallel to the wall are boost invariant in the strong sense.

Homogeneity and isotropy reduce the metric part, intrinsic to the wall, to be the spatial
part of a (D-1)-dimensional Friedmann-Lemâ�tre-Robertson-Walker (FLRW) metric [36] of
the form

(dsk)
2 = R2

h
(1� kr2)�1dr2 + r2d
2

D�3

i
; (2.1)

where R is independent of the radial coordinate r and the angular coordinates �i (i =
1; � � � ;D� 3) specifying the line element d
2

D�3 of (D-3)-sphere S
D�3. The scalar curvature

of this surface is equal to 2k=R2.
The sign of k determines the wall geometry. k = 0 de�nes a planar wall, in which case

the metric (2.1) can be written in Cartesian coordinates (dsk)
2 = R2(

PD�2
i=1 dx2i ). k > 0

corresponds to a spherical wall{ closed bubble{ with r and �i's being compact coordinates;
through a coordinate transformation r = k�1=2 sin� and rescaling of R, the line-element can
be written as (dsk)

2 = R2(d�2+sin2�d
2
D�3) = R2d
2

D�2. k < 0 corresponds to the negative
curvature, non-compact Gauss-B�olyai-Lobachevski surface; introducing r = (�k)�1=2 sinh%,
with % > 0, and rescaling R yields (dsk)

2 = R2(d%2 + sinh2% d
2
D�3).

The condition that the two-dimensional space-time (t; z) transverse to the wall is static
(as observed in the rest frame of the wall) implies the following form of the transverse part
of the metric:

(ds?)
2 = A(z)

�
dt2 � dz2

�
; (2.2)
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where z is the spatial direction transverse to the wall, t is the proper time and A(z) > 0.
With ds2 � (ds?)2 � (dsk)2 the metric takes the form:

ds2 = A(z)
�
dt2 � dz2

�
�R(t; z)2

h
(1� kr2)�1dr2 + r2d
2

D�3

i
: (2.3)

in which z 2 h�1;1i, and the other coordinates are those of the FLRW cosmological
model [36].

A straight-forward calculation of the nonzero components of the Einstein tensor G�
� =

R�
� �

1
2
R�

�g
�
� yields the result:

Gt
t = D�2

A

h
�R00

R
+ HR0

2R

i
+ (D�3)(D�2)

2R2

�
k +

_R2�R
0
2

A

�

Gz
t = D�2

A

h
_R0

R
� H _R

2R

i

Gz
z = D�2

A

h
�R
R
� HR0

2R

i
+ (D�3)(D�2)

2R2

�
k +

_R2�R
0
2

A

�

Gr
r = G�i

�i
= 3�D

A

h
R00

R
�

�R
R

i
� H 0

2A
� (D�3)(D�4)

2R2

�
k +

_R2�R
02

A

�

(2.4)

where i = 1 � � �D � 3, _R � @tR(t; z), R0 � @zR(t; z) and H � @z lnA(z).
The symmetry of the matter source (as speci�ed in the rest frame of the wall) implies

that the energy-momentum tensor is static, with T z
t = 0 (no energy ow in the (t; z)-plane)

and T �
� = g�(z) (� = (t; z; r; �i)), where g�(z) are functions of z, only. Then the Einstein's

equations G�
� = �DT

�
� imply the following constraints on R(t; z) and A(z) 2:

_R0

R
� H _R

2R = 0;

R00

R
� HR0

2R
= f2(z);

R00

R
�

�R
R

= f3(z);

k
R2

+
_R2�R

0
2

AR2
= f4(z);

(2.5)

where f1;2;3(z) are arbitrary functions of z.
The static metric Ansatz _R = 0 automatically satis�es Eqs. (2.5). For non-static metric,

time- integration of the �rst Eq. in (2.5) yields the condition

R0 =
HR

2
+ f1(z) (2.6)

2 �D is de�ned as �D � 8�GD, where GD is Newton's constant in D-dimensions. We de�ne the

Lagrangian density as 1
�D

(�R
2 + Lmatter):
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with f1(z) an arbitrary function of z. Adding z-derivative of (2.6) to the second Eq. in
(2.5) yields a condition f1(z)0 = [�H 0

2
+ f2(z)]R, which holds for any t only if f1(z) = f0 is

a constant and f2(z) =
H 0

2 .
The assumption of boost-invariance along the surfaces of constant z implies that f0 = 0

and as a consequence, Eq.(2.6) is solved by R2(r; t) = A(z)S2(t). (In the static case, i.e.
_R = 0, the same symmetry constraint also implies R2(z) / A(z).)3

Therefore, the metric Ansatz takes the form:

ds2 = A(z)
n
dt2 � dz2 � S2(t)

h
(1 � kr2)�1dr2 + r2d
2

D�3

io
; (2.7)

which has a universal form for any D-dimensions, and thus the same structure as the one
obtained in D=4 [25]. This result is due to the fact that in the wall comoving frame the
homogeneity and isotropy of space-time internal to the wall severely restrict the form of the
Einstein tensor to be that of Eq. (2.4); the static space-time transverse to the wall and the
boost invariance along the wall further �xes the metric to be of the universal, D-independent
form (2.7).

In the following Subsection we solve the Einstein equations for A(z) and S(t), which
specify the possible space-time structure away from the domain wall. We then employ the
in�nitely thin wall approximation [35] in order to determine the energy density of the wall
in terms of the parameters in the metric.

B. Local space-time solutions

We now solve Einstein's equations for S(t) and A(z) of the metric Ansatz (2.7). We
consider thin domain walls interpolating between two maximally symmetric vacua of zero,
positive, or negative cosmological constant.4

Plugging the metric Ansatz (2.7), i.e. R2(t; z) = A(z)S2(t) in the Einstein tensor (2.4),
yields the following equations for S(t) and A(z):

�S

S
= q0 =

_S2

S2
+

k

S2
; (2.8)

1

4

 
A0

A

!2

= q0 �
�

(D � 3)(D � 1)
A; (2.9)

3 Namely, we assume that the gravitational �eld inherits the symmetry of the source; the directions

parallel to the wall are boost invariant in the strong sense and thick walls will have the same S(t)

as found in the thin wall approximation and will asymptotically approach the thin wall result for

A(z). (See [25] for a more detailed discussion.)

4 Maximally symmetric vacuum solutions are well known [36]; nevertheless, we summarize the

results here for the comoving coordinate system of the wall. Note also that Israel's matching

conditions are easily satis�ed in this frame.
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where we have assumed that away from the wall, the energy momentum tensor is given by
T �

� = ���� with � the cosmological constant on either side of the wall. q0 is an integration
constant satisfying the consistency constraint �A(z) � (D � 3)(D � 1)q0.

Since the equation for S(t) is independent of dimensionality, the space-time intrinsic to
the wall is universal. Eq. (2.9) for A(z), i.e. the metric coe�cient specifying the space-time
transverse to the wall, is also of the same form as that obtained in D=4, except for the
D-dependent coe�cient in front of the cosmological constant. We choose to parameterize
the cosmological constant as:

� � �(D � 3)(D � 1)�2 � ���2: (2.10)

Thus, in terms of the parameter �, Eq. (2.9) has a universal, D-independent form and thus
yields the same solutions as the ones obtained in D=4 [25].

The fact that the domain wall space-time structure is universal, was anticipated in [26].
Nevertheless, the result is intriguing; both the local as well as the global space-time properties
of domain walls ((D-2)-con�gurations) in diverse (D) dimensions are universal. The study
of the local and global domain wall space-times in D=4 [25] can therefore be extended in a
straightforward way to the study of (D-2)-con�gurations in D-dimensions. (The special case
of D=5 recently attracted much attention due to its phenomenological implications.)

For the sake of completeness, we shall now write down the explicit results for S(t) and
A(z) [25]. We parameterize the curvature constant of the space-time internal to the wall (see
discussion at the beginning of the previous subsection) as k 2 f��2; 0; �2g. The solutions
of S(t) from Eq. (2.8) can be classi�ed according to the sign of q0:

q0 = ��2 : S� = cos(�t) k = ��2; (2.11)

q0 = 0 : S0 =

(
�t k = ��2;
1 k = 0;

(2.12)

q0 = �2 : S+ =

8><
>:
sinh(�t) k = ��2;
e�t k = 0;
cosh(�t) k = �2;

(2.13)

where the subscripts (�; 0;+) refer to the respective sign of q0. (Due to the time-translation
and time-reversal invariance, the integration constants are adjusted to yield the canonical
form for S(t), and without loss of generality, � � 0 is chosen.) The form of the solutions
S�;0;+ (Eqs.(2.11)-(2.13)) implies that the space-time intrinsic to the wall is that of AdSD�1,
MD�1 and dSD�1, respectively.

Solutions of (2.9), classi�ed according to the sign of q0, yield the following form of A(z):

q0 = ��2 : A� = �2[� cos(�z + #)]�2 � = ���2 � ���2; (2.14)

q0 = 0 : A0 =

(
(�z � 1)�2 � = ���2;
1 � = 0;

(2.15)

q0 = �2 : A+ =

8><
>:
�2[� sinh(�z � �z0)]�2 � = ���2;
e�2�z � = 0;
�2[� cosh(�z � �z00)]�2 � = ��2 � ��2;

(2.16)

Again, the subscripts (�; 0;+) for A(z) refer to the sign of q0. Without loss of generality we
have moved the origin of the z-axis to the position of the wall (z0 = 0). The three integration
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constants #, z0, and z00 are determined by the requirement that we choose A(z0 = 0) = 1
which yields:

#� = �arccos(�=�); (2.17)

�z0� =
1

2
ln

"
1 +

2�2

�2
�

2�

�2
(�2 + �2)1=2

#
; (2.18)

�z00� =
1

2
ln

"
�1 +

2�2

�2
�

2�

�2
(�2 � �2)1=2

#
: (2.19)

The constants �z0 and �z00 satisfy e2�(z
0

+
+z0

�
) = e2�(z

00

+
+z00

�
) = 1 and e2�z

00

� > 1 > e2�z
00

+ and
e2�z

0

� � 1 � e2�z
0

+ where in the last case, the equality is obtained when � = 0-the extreme
limit is taken. (As one can see from Eq. (2.19), there is no extreme limit (� ! 0) in the
de Sitter case.)

C. Israel's matching conditions and surface energy density of the domain walls

In the thin wall approximation, the energy-momentum tensor and the Einstein tensor
have �-function singularities at the wall. In Israel's formalism [35] for singular layers the
metric tensor has a discontinuity in its �rst order derivatives in the direction transverse
to the wall, and the Lanczos tensor S i

j, which is the surface energy-momentum tensor of
the wall located at z0, is related to the discontinuity of the extrinsic curvature K i

j in the
following way:

�DS
i
j = �[K i

j]
� + �ij [K]�: (2.20)

The square brackets [ ]� is de�ned as [
]� � lim�!0(
(z0+�))�
(z0��)) and xi 2 ft; r; �ig
(i = 1; � � � ;D � 3) are the coordinates parallel to the wall. K i

j is given by the covariant
derivative of the space-like unit normal n� of the wall's hyper-space-time. In a normalized
coordinate system where gẑẑ = �1, the extrinsic curvature can be written as Kij = � �

2gij;ẑ
where � = �1 signi�es the inherent sign ambiguity of the unit normal n�. Hence, in a
comoving coordinate frame, where we have chosen A(z0 = 0) = 1, the Lanczos tensor can
be written as

�DS
i
j = ��ij [�H]�z=0: (2.21)

The energy density of the wall � � S t
t, which is equal to the wall's tension � � Sr

r = S�i
�i
,

is given by

�D� = �[�H]�z=0: (2.22)

Applying Israel's formalism to the local vacuum solutions speci�ed by Eqs. (2.11)- (2.16),
we �nd the surface energy density �, and tension � = �, to be of the form:

�D� = 2�1h1

 
q0 �

�1

(D � 3)(D � 1)

!1=2

� 2�2h2

 
q0 �

�2

(D � 3)(D � 1)

!1=2

; (2.23)
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where the �rst [second] contribution to the energy density comes from z < 0 [z > 0] side
of the wall. We choose, without loss of generality, to orient the z-coordinate so that the
vacuum of lowest energy will be placed on the z < 0 side (i.e. �1 < �2).

In Eq. (2.23), in additional to the ambiguity in the sign of the unit normal n� (�i = �1),
there is another sign ambiguity, hi = �1, in taking the square-root of Eq. (2.9). A kink-
like solution for the wall i.e. the scalar interpolating between the extrema of the potential,
implies �1 = �2 = 1. In addition, we take hi = 1 if Ai(z) is an increasing function of z; and
hi = �1 if Ai(z) is decreasing.

The domain wall solutions fall into two categories: those with positive energy density
(corresponding to the in�nitely thin wall limit of a kink solution, interpolating between
the minima of the potential) and those with negative energy density which correspond to
choosing the reversed values of hi. Examples of negative tension walls are encountered in
gauged supergravity theories (see, e.g., [10]) as a consequence of a kink solution interpolating
between maxima of the potential.

For a given value of q0 the walls can be classi�ed according to the choice of hi into
the following classes (the notations are chosen to be compatible with earlier classi�cations
[22,10] of extreme wall (q0 = 0) solutions):

� Type I walls: a special case of Type II walls with �2 = 0, and q0 = 0.

� Type II walls: positive-tension walls with h1 = �h2 = 1.

� Type III walls: positive-tension walls with h1 = h2 = 1.

� Type III0 walls: negative-tension walls with h1 = h2 = �1, and �III 0 = ��III.

� Type IV walls: negative-tension walls with h1 = �h2 = �1, and �IV = ��II.

� Type V walls: a special case of of Type IV walls with �2 = 0, q0 = 0, and �V = ��I.

The global and local space-times of positive tension walls with q0 = 0 (and S0 = 1) as well
as q0 > 0 (and S+ = cosh(�t)) were extensively studied in [25]. In [25], the q0 < 0 (S(t) =
cos(�t)) examples were not further studied, in part due to the geodesic incompleteness of
the space-time description of the AdS2 space-time transverse to the wall. Nevertheless, these
are proper local solutions deserving further study (see also [27]). On the other hand the
negative tension walls are of interest in the study of AdS/CFT correspondence and thus
deserve further investigation.

In the following Section we provide a systematic classi�cation of the (local and global)
space-time structure of the possible domain wall solutions.

III. CLASSIFICATION OF THE DOMAIN WALL SOLUTIONS

We shall classify the solutions according to the values of the parameter q0. The metric,
intrinsic to the wall and speci�ed by S(t) is locally related to standard coordinates of MD�1,
AdSD�1, or dSD�1 space-times for q0 = 0, q0 > 0 or q0 < 0, respectively. Within each
class we then discuss the space-time structure transverse to the wall as determined by the
metric conformal factor A(z); its structure is governed by the energy density (2.23) and its
relationship to the cosmological constants on either side of the wall.

8



A. Walls with (q0 = 0): extreme walls

The q0 = 0 solutions, known as extreme domain walls [23], exist for �1;2 � 0. (The
cosmological constant is de�ned as �1;2 � �(D � 3)(D � 1)�2

1;2.)
Since the wall is homogeneous, isotropic and boost invariant, the spatial curvature of

constant z sections is not unambiguously de�ned; there is no preferred frame in the (D-1)-
dimensional space-time of the wall. The two S0 solutions (2.12)|the Milne type solution
with S = �t and k = ��2 and the inertial Minkowski solution with S = 1 and k = 0| both
describe MD�1 space-time. The two solutions are related by a coordinate transformation [37]
that does not involve the transverse coordinate z and therefore describe locally equivalent
space-times.

The S = 1 solution is the only wall which represents a noncompact planar (k = 0)
and static wall. These walls could be realized as supersymmetric bosonic con�gurations.
Examples of supersymmetric domain walls in D=4 N = 1 supergravity coupled to chiral
matter super�elds were �rst found and studied in [21], and recent examples within D=5
gauged supergravities were given in [10].

The physically distinct solutions (with S(t) = 1) correspond to two sets of solutions for
A(z) in Eq. (2.15), with the asymptotic D-dimensional anti-deSitter (AdSD) and Minkowski
(MD) space-times described by horo-spherical and Cartesian coordinates, respectively.

Positive energy solutions can be classi�ed as the following three types [22], according to
the relationship of the energy density of the wall � to �1;2:

� Type I: planar walls with �D�ext;I = 2�1, interpolate between MD and AdSD where on
the latter side the metric conformal factor A(z) decreases and reaches Cauchy horizon
at z ! �1. These walls saturate a D-dimensional analog of the Coleman-deLuccia
[38] bound.

� Type II: planar walls with �D�ext;II = 2(�1+�2) interpolate between two AdSD regions,
in which A(z) decreases (repulsive gravity) away from either side of the wall. (The
special case with a Z2-symmetry (�1 = �2) in D=5 gives rise to the Randall-Sundrum
scenario with one positive tension brane [13].) z = �1 correspond to the Cauchy
AdS horizons. The geodesic extensions were studied extensively in [23{25] and bear
striking similarities to the global space-times of extreme charged black holes.

� Type III: planar walls with �D�ext;III = 2(�1 � �2) interpolate between two AdSD
spaces with di�erent cosmological constants; the conformal factor goes to in�nity on
z > 0 side of the wall, while decreases on the other side. The singularity in A(z) at
a �nite value of z represents the time-like boundary of the AdSD space-time. Again
z !�1 corresponds to the Cauchy horizon.
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FIG. 1. The metric coe�cients A(z) are plotted as a function of transverse coordinate z,

for dual pairs of extreme (q0 = 0) domain walls. Fig.(1a) denotes Type I-Type V pairs with the

cosmological constant parameters �1 = 1 and �2 = 0, Fig.(1b) shows Type II-Type IV pairs with

�1 = �2 = 1 and Fig.(1c) shows Type III-Type III0 pairs with �1 = 1 and �2 = 1=2.

On the other hand, the walls with negative energy density fall into the following classes
[10]:

� Type III0: planar walls with �ext;III 0 = �2(�1��2) have the space-time structure that
is a mirror image of that of Type III walls; the conformal factor goes to in�nity on
z < 0 side of the wall, on z > 0 side the conformal factor decreases, the AdS Cauchy
horizon is at z !1.

� Type IV: planar walls with �ext;IV = �2(�1 + �2) interpolate between two AdSD
regions, in which A(z) increases on either side of the wall, reaching the AdS boundaries
at a �nite value of z on either side. (Those are typical wall solutions encountered in
gauged supergravity theories (see, e.g., [10]), and are of interest in the study of RGE
ows in the context of AdS/CFT correspondence.)

� Type V: planar walls with �ext;V = �2�1, interpolating between MD and AdSD; on
the AdS side A(z) increases away from the wall, approaching the boundary of the AdS
at a �nite value of z.

The behavior of the conformal factor A(z) for each class of solutions can be easily seen
from speci�c examples shown in Fig.1. Type I-V, Type II-IV and Type III-III0 can be viewed
as \dual". Namely, the energy density of these walls have opposite signs and the space-time
patches of the AdSD are complementary, i.e., AdS Cauchy horizons in one case are replaced
by the boundaries of AdS space-times in another and vice versa. Note that in this sense
the extreme Type II walls, which provide a realization of the Randall-Sundrum scenario
in D=5, and Type IV walls, which are generically encountered in the study of AdS/CFT
correspondence, provide the complementary domains of the AdS space-time. We also note
that within �eld-theoretic framework, such as gauged supergravity theories, a realization of
(�nite) negative tension domain walls and the issues of their stability require further study.
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B. Walls with q0 > 0

q0 = �2 solutions with the form of S+ in Eq. (2.13) describe (D-1)-dimensional de Sitter
space-time (dSD�1) parallel to the wall. The topology of dSD�1 is R(time)� S

D�2(space).
dSD�1 represents a hyperboloid embedded in a at D-dimensional Minkowski space-time [24],
and the three possible spatial curvatures (k = ��2; 0; �2) correspond to three di�erent
choices of constant time slices of this hyperboloid. However, only the positive curvature
solution with S(t) = cosh(�t) yields the complete covering of dSD�1 [24,25]; we will mainly
focus on this class of solutions, which have a topology of the \expanding bubbles". A possible
way to create such expanding bubbles is via instantons of Euclidean gravity.

The walls can be classi�ed according to their energy density (2.23) into the following
classes:

� Type II walls with

�D�non;II = 2
�
��2

1 + �2
�1=2

+ 2
�
��2

2 + �2
�1=2

� �D�ext;II: (3.24)

are non-extreme, i.e. their energy density is above that of their extreme counterparts.
Here �i � �(D�3)(D�1)�2

i . Note that the domain walls in this class involve positive,
zero and negative cosmological constants, and the minus sign in front of �2

i corresponds
to a positive �i. Further more, in the de Sitter case, �2

i � �2 is required. There are
6 possible con�gurations of Type II wall interpolating between di�erent space-times,
which are shown as 6 examples in Fig. 2.

Con�gurations with geodesically complete space-time internal to the wall (S(t) =
cosh(�t)) describe expanding bubbles with two insides. [25]. Namely, because the radius
Rb of the curvature of concentric shells at distance z is proportional to A1=2(z)S(t),
Rb, at �xed t, decreases as A(z) decreases with increasing jzj, and therefore either
side of the wall corresponds to an inside region of the bubble. In addition, since S(t)
increases with t, the bubble is expanding to an asymptotic observer on either side of
the wall. (One possible origin of a creation of such con�gurations is via instantons of
Euclidean gravity-quantum cosmology [39]).

Since A(z) decreases with increasing jzj, gravity is repulsive on either side of the
wall and z ! �1 corresponds to (cosmological) horizons. The geodesic extensions
are studied in [25], and bear striking similarities to non-extreme charged black holes
where time-like singularities are replaced by wall boundaries.

The walls with �1;2 � 0 are generalizations of the extreme Type II and Type I walls
with � = 0 to � > 0. The walls with �1 or �2 > 0 and �1 = �2 = 0 do not have an
extreme limit (� ! 0). The latter class of MD �MD Type II domain walls in D=4
(and S(t) = e�t) was studied in [40]. dS-dS Type II walls are unstable, since false
vacuum decay walls (dS-dS Type III walls) are dynamically preferred [41,42], except
for the case of �1 = �2 > 0.

� Type III walls with q0 > 0 have an energy density lower than that of their extreme
wall counterparts:

11



�D�ultra;III = 2
�
��2

1 + �2
�1=2

� 2
�
��2

2 + �2
�1=2

� �D�ext;III; (3.25)

and are referred to as ultra-extreme domain walls. The solutions with asymptotic dSD
space-times require �2

i � �2, and consequently they do not have an extreme limit.
Speci�c examples of 5 possible con�gurations of the Type III walls are shown in Fig.3.

Con�gurations (with S(t) = cosh(�t)) are false vacuum decay bubbles [43,42]. Namely,
the radius Rb / A1=2(z)S(t) decreases (increases) for z < 0 (z > 0), and thus corre-
sponds to the inside (outside) region the bubble. The solutions which only involve MD

or AdSD, are more like ordinary bubbles compared with the Type II walls because as
t increases the expanding bubble eventually sweeps out the space-time on the z > 0
side.

On the other hand, on the de Sitter side of the wall, the metric function turns around
at point zcrit and decreases beyond zcrit. Hence, beyond zcrit, the inside of the bubble
becomes an outside. z !1 corresponds to cosmological horizons that can be reached
by test particles with energy larger than Ecrit. In D=4 the non-negative cosmological
constant domain walls of this type were extensively studied in [41,42].

D = 4 false vacuum decay bubbles with non-positive cosmological constants were
studied in [38,25]. The inside of the bubble (z � 0) has the same space-time structure
(with cosmological horizons at z ! �1), just as the Type II non-extreme walls
(q0 > 0). The outside (z � 0) of the bubble has no horizons and on the MD side of
the wall z!1 corresponds to the boundary of the space-time, while on the AdS side
the a�ne boundary is at some �nite value of z.

� Type III0 have the energy density: �non;III 0 = ��ultra;III � �III;ext, which is above the
corresponding extreme (q0 = 0) counterparts. Their space-time is also complementary
to that of the Type III walls (see Fig.3). These are \false vacuum decay bubbles"
with the larger cosmological constant side (z � 0) sweeping out the vacuum with the
smaller cosmological constant (z � 0), in most of the cases, except the dS-dS wall as
shown in Fig.(3e). In the latter case, the metric function A(z) becomes a decreasing
function of z for z < zcrit such that the inside of the bubble becomes an outside, and
z !�1 is a cosmological horizon.

These con�gurations resemble the dynamics of an \up-side down world" and an actual
realization of such negative tension con�gurations within a �eld theoretical framework
is needed.

� Type IV walls with �ultra;IV = ��non;II � �ext;IV are ultra-extreme negative tension
\expanding bubbles with two outsides". For non-positive cosmological constants this is
the \apocalypse world" where on either side of the wall an asymptotic observer will be
eventually hit by the bubble. Namely, the conformal factor A(z) increases on either
side of the wall reaching the boundary of the space-time, which is z = �1 for MD or
a �nite value of z for AdSD, thus either side corresponds to the outside of the wall.
Since S(t) grows with t, these are expanding bubbles which always hit an asymptotic
observer.
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FIG. 2. The metric function A(z) of Type II and Type IV walls in the case of (q0 > 0). There

are six con�gurations. Fig.(2a) represents a AdS-AdS wall with �1 = �2 = 1 and � = 1=2, Fig.(2b)

represents a AdS-M wall with �1 = 1; �2 = 0 and � = 1=2. Fig.(2c) represents a M-M wall with

� = 1=2, Fig.(2d) represents a AdS-dS wall with �1 = �2 = 1 and � = 2, Fig.(2e) is a M-dS wall

with �1 = 0; �2 = 1 and � = 2 and Fig.(2f) represents a dS-dS wall with �1 = �2 = 1 and � = 2.
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FIG. 3. The metric function A(z) of Type III and Type III' walls in the case of (q0 > 0).

There are �ve con�gurations. Fig.(3a) represents a AdS-AdS wall with �1 = 1 ; �2 = 1=2 and

� = 1=2, Fig.(3b) represents a AdS-M wall with �1 = 1; �2 = 0 and � = 1=2, Fig.(3c) represents

a AdS-dS wall with �1 = 1; �2 = 1=2 and � = 1, Fig.(3d) is a M-dS wall with �1 = 0; �2 = 1=2

and � = 1 and Fig.(3e) represents a dS-dS wall with �1 = 1=4; �2 = 1=2 and � = 1.
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C. Walls with q0 < 0

For the case q0 = ��2 the solutions exist only for the negative-cosmological constant
vacua that satisfy �2

i = ��i
(D�1)(D�3) � �2, The space-time internal to the wall is described

by a unique solution with Eq.(2.11) and Eq.(2.14); the space-time intrinsic to the wall is
AdSD�1. Note that with S�(t) = cos (�t) (Eq.(2.11)), the region � �

2�
� t � �

2�
describes

only a patch of the AdSD�1 space-time, and t = � �
2� corresponds to an apparent coordinate

singularity (see e.g., [44]). Also, since the radius of the curvature transverse to the wall
Rb / jS(t)j, the wall is expanding for � �

2� � t � 0 and then shrinking for 0 � t � �
2� .

These walls could be viewed as a generalization of their extreme counterparts (with
q0 = � = 0) to q0 < 0. They can also be viewed as an analytic continuation of AdS-AdS
domain walls with q0 = �2 > 0 to imaginary �. In this sense the AdS-AdS walls with q0 > 0
and q0 < 0 are \dual" to each other, and extreme AdS-AdS walls with q0 = 0 provide a
dividing line between the two classes of solutions.

The walls with q0 < 0 can be classi�ed according to their energy densities relative to
their extreme counterparts as:

� Type II walls are ultra-extreme walls with �D�ultra;II = 2(�2
1��2)1=2+2(�2

2��2)1=2 �
�D�ext;II. The space-time transverse to either side of the wall has repulsive gravity near
the wall, i.e. A(z) decreases away from the wall until the critical point �zcrit+#� � 0.
Beyond zcrit, A(z) increases with increasing jzj, reaching the a�ne boundary of the
AdS space at �z + #� = �

2
. Therefore, these walls exhibit repulsive gravity only

in the region close to the wall. Eventually, geodesics cross into a region of attractive
gravity, with only null geodesics reaching the AdS boundary. Interestingly, there are no
cosmological horizons. (Note the conformal factor A(z) has a complementary behavior
relative to that of q0 > 0 dS-dS wall.)

� Type III walls are non-extreme walls with �D�non;III = 2(�2
1��2)1=2�2(�2

2��2)1=2 �
�ext;III: On the z < 0 side the gravity is again �rst attractive and then repulsive, the
point �z + #+ = ��

2
corresponding to the AdS boundary. On the other hand, on the

z > 0 side of the wall, gravity is attractive with the AdS boundary taking place at
�z + #� = �

2 .

� Type III0 walls are ultra-extreme walls with �D�ultra;III 0 = �2(�2
1 � �2)1=2 + 2(�2

2 �
�2)1=2 � �D�ext;III 0. Its space-time structure in the transverse direction is a mirror
image of the Type III q0 < 0 walls.

� Type IV walls are ultra-extremewalls with �D�non;IV = �2(�2
1��

2)1=2�2(�2
2��

2)1=2 �
�D�ext;IV , with attractive gravity on either-side of the wall until �z + #� = ��

2 , the
the AdS boundary.

It would be very interesting to investigate further the global space-time properties of
these con�gurations, the issues of their dynamic stability, as well as their �eld theoretic
embedding.
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FIG. 4. The metric function A(z) of Type II-IV and Type III-III' walls in the case of (q0 < 0).

They are both AdS-AdS walls with parameter �1 = 1, �2 = 1=2 and � = 1=4.

IV. DISCUSSION

We have provided a systematic analysis of the space-time structure in the background
of in�nitely thin vacuum domain walls [(D-2)-con�gurations] in D-dimensional general rela-
tivity. We have shown that the homogeneity and isotropy of the space-time intrinsic to the
wall strongly constrains the nature of the space-time (both intrinsic and transverse to the
well) and that this space-time structure is universal for all D-dimensions. The analysis also
revealed an inherent connection between the global and local space-time structure of the
wall and the value of the wall tension relative to the cosmological constants on either side
of the wall.

The solutions fall into three classes according to the value of the \non-extremality pa-
rameter" q0: q0 = 0, q0 > 0, and q0 < 0. Within each class, depending on whether gravity
is repulsive or attractive near either side of the wall, the walls can have positive tension
solutions (Type I, II, III walls) and negative tension solutions (Type III0, IV, V walls) whose
space-times transverse to the wall display complementary properties. In this sense Type
I-V, II-IV and III-III0 walls can be viewed as dual. (In particular, Type II walls provide
a set-up for Randall-Sundrum scenario in D=5 with repulsive gravity on either side of the
wall.)

q0 = 0 solutions are planar, static con�gurations. The precise tuning of their energy-
density to cancel the value of cosmological constant is ensured by supersymmetry. Such
walls exist only for non-positive cosmological constants.

Solutions with positive non-extremality parameter (q0 = �2 > 0) are expanding \bub-
bles" with the space-time internal to the wall corresponding to the expanding de Sitter
(dSD�1) FLRW universe. In particular, Type II walls are expanding bubbles with two in-
sides and thus \safe walls", Type III and III0 walls are bubbles with one inside and one
outside and which sweep out one side of the wall through \false-vacuum" decay, while Type
IV walls are expanding bubbles with two outsides and thus sweep out the vacuum on ei-
ther side of the wall. These solutions exist both for positive and negative values of the
cosmological constants.
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Solutions with q0 = ��2 < 0 describe an anti-deSitter (AdSD�1) FRWL universe internal
to the wall. However, the coordinates describe only a patch of the AdS space-time with the
coordinate singularities at t = � �

2�
. These walls have solutions only for the negative values

of cosmological constants, and do not have cosmological horizons in directions transverse to
the wall. (Their energy density is complementary to that of walls with q0 > 0.) Further
investigations of the geodesics extensions and their global structure is needed.

While the work provides a classi�cation of vacuum domain wall space-times, we did not
address in detail the dynamic issues such as their stability or the nature of their creation,
nor did we elaborate on a �eld-theoretic embedding of such domain walls. Let us mention
again that AdS-AdS Type II walls with q0 > 0 may be realized via quantum cosmology
[39] and that Type III walls are Euclidean bounce solutions of false-vacuum decay bubbles.
As for �eld-theoretic realization, positive tension extreme walls could be realized as bosonic
con�gurations in supersymmetric theories, corresponding to a kink solution interpolating
between two supersymmetric minima. However, it is expected that negative tension walls
are unstable due to the appearance of a ghost mode. 5 The gauged supergravity solutions
tend to provide a frame-work for negative tension extreme wall solutions, i.e. the kink
solution interpolates between supersymmetric maxima. This issue requires further study
and it may have a resolution in the string theory context (see also, e.g, [11]).

The domain wall solutions studied in this paper can be stacked-up in the transverse z-
direction, thus provide a solution for an array of parallel walls. In particular, if D-dimensional
space-time has possible vacuum solutions with cosmological constants �1;2;���n, then one can
superimpose in z direction di�erent types of domain walls interpolating between these vacua;
this may yield interesting possibilities with phenomenological implications. However, the
�eld-theoretic embedding of such multi-wall set-ups may be di�cult; the multi-kink solutions
are supposed to interpolate continuously between (isolated) extrema of the potential and
the desired solution may not exist.

Let us consider speci�c examples with static (extreme) walls in D=5. Extreme Type II
walls provide a set-up for Randall-Sundrum scenario with one positive tension brane in D=5
with repulsive gravity on either side of the wall [13]. The scenario with one positive tension
brane and one negative tension brane [12], can be realized as a special (Z2-symmetric)
periodic array of Type II and Type IV extreme wall. On the other hand, the realization
of such an array within �eld theory may be hard to realize and it should clearly involve
more than one scalar. The example of [15] is a superposition of Type II and Type III wall.
It could be realized with a scalar �eld that interpolates between two supersymmetric AdS
minima with large enough potential barrier which yields Type II wall (�D� = �1 + �2),
and the third deeper minimum with a potential barrier insu�ciently large yields Type III
wall (�D� = �3 � �2). (Note however, that in spite of its positive energy-density the Type
III walls are inherently unstable; for nonzero extremality parameter q0 > 0 they turn into
false vacuum decay bubbles, sweeping out the space on one side of this wall.) Another
interesting possibility is a superposition of the two extreme Type I walls [45], which can be
realized via a single kink and anti-kink that interpolate between anti-deSitter and Minkowski
supersymmetric minima.

5We would like to thank R. Sundrum for a discussion on this point.
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The non-static Type II walls in AdS5 both in the case of q0 > 0 and q0 < 0 are those
studied in [27,32{34]. Another intriguing possibility may be a superposition of these solutions
with q0 > 0 (or q0 < 0), where the conformal factors can again be matched from one wall to
another. Note however, the non-static nature of these solutions may involve pathologies of
space-times such as bubbles of false vacuum decays, and require further investigations.

We would like to conclude with a few remarks regarding the nature of the non-extremality
parameter q0 = �2 > 0 within cosmological context. (For related ideas implemented in the
context of AdS/CFT correspondence, see [46].) Extreme domain walls (q0 = 0) are static due
to the \miracle of supersymmetry". Thus, in a cosmological context, at zero temperature
(T = 0), domain walls between supersymmetric vacua remain static. On the other hand, at
�nite temperature T > 0, supersymmetry is broken, and thus the domain walls are those
with non-zero q0 = �2. Namely temperature corrections to the scalar corrections are / T 2,
thus modifying the energy density of the wall � = �ext +O(T 2). Clearly, since the leading
corrections to � are of O(q0 = �2) the result implies that q0 / T 2 (or � / T ). In particular,
the static extreme Type II [Type III] domain wall (at T = 0) becomes a non-extreme Type
II [Type III] solution (at T > 0) which is the expanding de-Sitter FLRW bubble with two
[one] insides. Thus the positive cosmological constant intrinsic to the wall as well as the
rate of expansion of the bubble are proportional to � / T . Thus as the universe cools the
expansion rate and the cosmological constant on the wall decrease.
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